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Summary SGD
e \We propose VSGD: a novel optimizer that adopts a probabilistic Update model parameters
approach. We model the true gradient and the noisy gradient as using noisy gradient of the
latent and observed random variables oss function and step size
e \We draw connections between VSGD and several established defined by

non-probabilistic optimizers.

e We carry out an empirical evaluation of VSGD by comparing its 0,|=0,_, — mpt
performance against the most popular optimizers

Probabilistic Model

e \We model noisy gradient (observed) and
true gradient (latent) with gaussians

e \We use Gamma prior over precision variables
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Posterior Inference

We employ stochastic variational inference
with mean field assumption to approximate
posterior of the unobserved variables
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Table 1. Final Average test accuracy, over three random seeds.

VSGD VSGD Abpam AbDAMW SGD
(w/L2) (w/oL2) (w/oL2) (w/L2) (w/ mom)
CIFAR100
VGG16 70.1 70.0 66.8 66.6 67.9
CONVMIXER 69.8 69.1 66.5 67.0 65.4
RESNEXT-18 71.4 71.2 68.2 69.7 68.5
TINYIMAGENET-200
VGG19 51.2 52.0 47.6 49.0 50.9
CONVMIXER 53.1 52.6 51.9 52.4 52.4
RESNEXT-18 48.7 47.2 48.8 48.9 47.0
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We derive closed-form updates for global and
local variational parameters and scale the step
size using the second moment estimate:
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Constant VSGD

A simplified model assumes constant variance
ratio between noisy and true gradient

p(gt|w;u) = N (ug, K, 'w™),

p(g¢lgs, w) = N(gs,w™),
p(w) =T'(v,7).

The first and second gradient momentum allows
us to draw connection to Adam, SGD with
momentum, and AmsGrad
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Summary

e We propose VSGD: a
novel optimizer that
adopts a probabilistic
approach.

In VSGD, we model the
true gradient and the
noisy gradient as latent
and observed random
variables, respectively,
within a probabilistic
model.

We draw connections
between VSGD and
several established
non-probabillistic
optimizers.
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Table 1. Final Average test accuracy, over three random seeds.

VSGD VSGD AbaAM AbpAMW SGD
(w/L2) (w/oL2) (w/oL2) (w/L2) (w/ mom)
CIFAR100
VGG16 70.1 70.0 66.8 66.6 67.9
CONVMIXER 69.8 69.1 66.5 67.0 65.4
RESNEXT-18 71.4 71.2 68.2 69.7 68.5
TINYIMAGENET-200
VGG19 51.2 52.0 47.6 49.0 50.9
CONVMIXER 53.1 52.6 51.9 52.4 524
RESNEXT-18 48.7 47.2 48.8 48.9 47.0

We observe that VSGD almost always
converges to a better solution
compared to ADAM and SGD,
outperforming ADAM by an average of
2.6% for CIFAR100 and 0.9% for
TINYIMAGENET-200.

Ablation Studies

9 Accuracy
le-9 67.75
Se-9 68.59
le-8 69.03
Se-8 69.77
le-7 69.71
le-3 60.97
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