

Variational Stochastic Gradient Descent for Deep Neural Networks

#AI #WANT #HP @ ICML 2024

Haotian Chen*, Anna Kuzina*, Babak Esmaeili, Jakub M. Tomczak

Summary

- We propose VSGD: a novel optimizer that adopts a probabilistic approach. We model the true gradient and the noisy gradient as latent and observed random variables
- We draw connections between VSGD and several established non-probabilistic optimizers.
- We carry out an empirical evaluation of VSGD by comparing its performance against the most popular optimizers

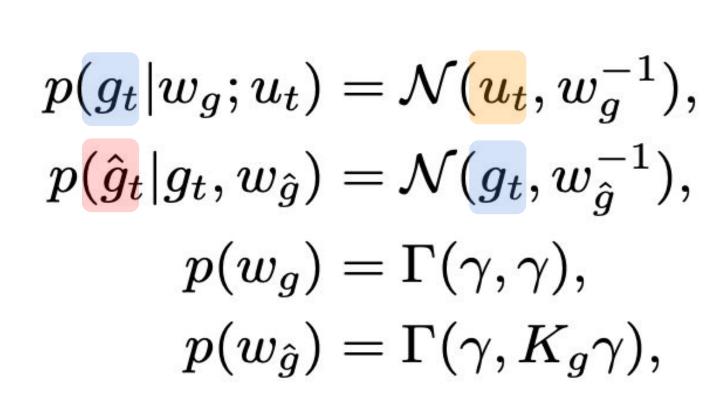
SGD

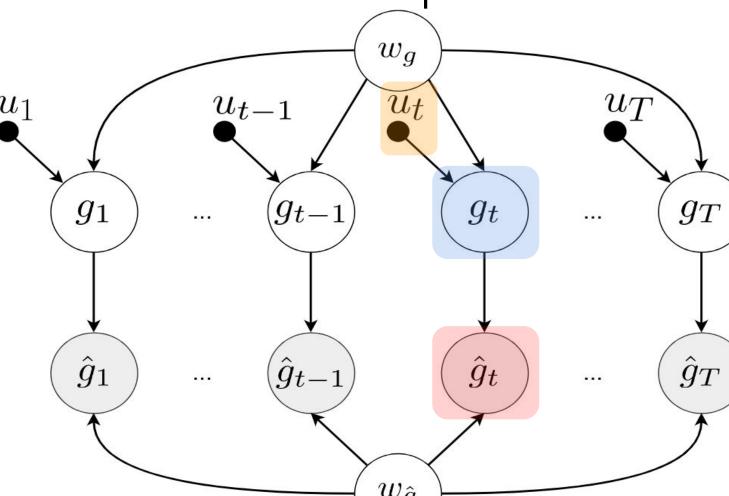
Update model parameters using noisy gradient of the loss function and step size defined by learning rate

$$\theta_t = \theta_{t-1} - \eta_t \hat{g}_t$$

Probabilistic Model

- We model noisy gradient (observed) and true gradient (latent) with gaussians
- We use Gamma prior over precision variables

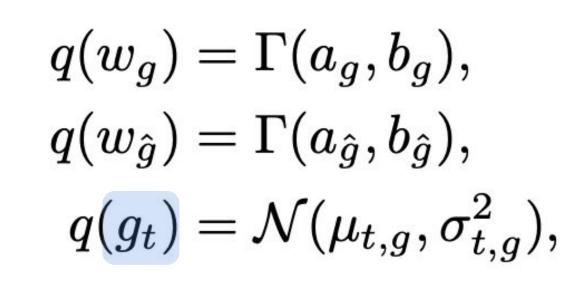




with mean field assumption to approximate posterior of the unobserved variables

Posterior Inference

We employ stochastic variational inference



Control variate aggregates information about previously observed noisy gradients and serves as a mean for the true gradient

$$u_t = \mathbb{E}_{p(g_t|\hat{g}_{t-1};u_{t-1})}[g_t],$$

Results

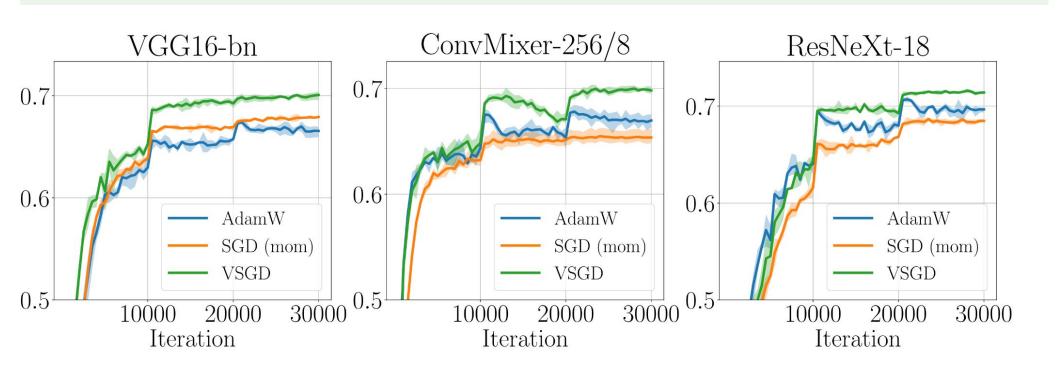


Table 1. Final Average test accuracy, over three random seeds.

	VSGD	VSGD	A DAM	ADAMW	SGD	
	(w/L2)	(w/o L2)	(w/o L2)	(w/L2)	(w/ mom)	
	CIFAR100					
VGG16	70.1	70.0	66.8	66.6	67.9	
CONVMIXER	69.8	69.1	66.5	67.0	65.4	
RESNEXT-18	71.4	71.2	68.2	69.7	68.5	
	TINYIMAGENET-200					
VGG19	51.2	52.0	47.6	49.0	50.9	
CONVMIXER	53.1	52.6	51.9	52.4	52.4	
RESNEXT-18	48.7	47.2	48.8	48.9	47.0	

VSGD almost always converges to a better solution compared to ADAM and SGD, outperforming ADAM by an average of 2.6% for CIFAR100 and 0.9% for TINY IMAGENET-200.

We derive closed-form updates for global and local variational parameters and scale the step size using the second moment estimate:

$$\theta_t = \theta_{t-1} - \frac{\eta}{\sqrt{\mu_{t,g}^2 + \sigma_{t,g}^2}} \mu_{t,g},$$

Constant VSGD

A simplified model assumes constant variance ratio between **noisy** and **true** gradient

$$p(g_t|\omega; u_t) = \mathcal{N}(u_t, K_g^{-1}\omega^{-1}),$$

 $p(\hat{g}_t|g_t, \omega) = \mathcal{N}(g_t, \omega^{-1}),$
 $p(\omega) = \Gamma(\gamma, \gamma).$

The first and second gradient momentum allows us to draw connection to Adam, SGD with momentum, and AmsGrad

$$\mu_{t,g} = \mu_{t-1,g} \frac{K_g}{K_g + 1} + \hat{g}_t \frac{1}{K_g + 1},$$

$$\mathbb{E}\left[g_t^2\right] = \mu_{t-1,g}^2 \frac{K_g^2}{(K_g+1)^2} + \hat{g}_t^2 \frac{1}{(K_g+1)^2} + \frac{2K_g}{(K_g+1)^2} + \frac{1}{K_g+1} \frac{b_{t-1,\hat{g}}}{a_{t-1}}.$$

TUE UNIVERSITY OF TECHNOLOGY

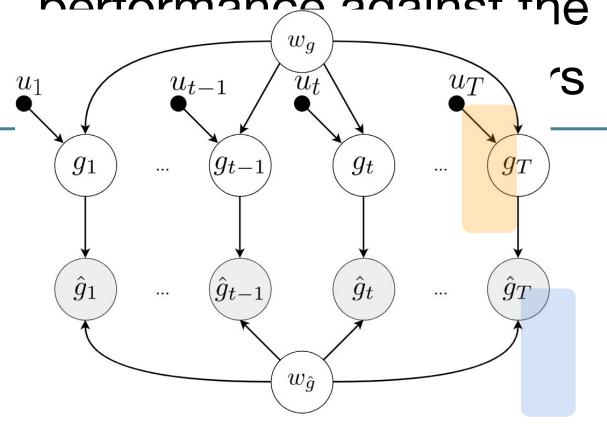
Variational Stochastic Gradien Descent

for Deep Neural Networks

Haotian Chen*, Anna Kuzina*, Babak Esmaeili, Jakub M. Tomczak

Summary

- We propose VSGD: a novel optimizer that adopts a probabilistic approach.
- In VSGD, we model the true gradient and the noisy gradient as latent and observed random variables, respectively, within a probabilistic model.
- We draw connections between VSGD and several established non-probabilistic optimizers.
- We carry out an empirical evaluation of VSGD by comparing its narformance against the



 $p(g_t|w_g;u_t) = \mathcal{N}(\underbrace{u_t,w_g^{-1}}),$

 $p(\hat{g}_t|g_t, w_{\hat{g}}) = \mathcal{N}(\underline{g_t, w_{\hat{g}}^{-1}}),$

 $p(w_g) = \Gamma(\gamma, \gamma),$

 $p(w_{\hat{q}}) = \Gamma(\gamma, K_q \gamma),$

Variational Stochastic Gradient Descent Model

- We model noisy gradient (observed) and true gradient (latent with gaussians)
- We use Gamma prior over precision variables
- Control variate aggregates information about previously observed noisy gradients and serves as a mean for the true gradie $u_t = \mathbb{E}_{p(g_t | \hat{g}_{t-1}; u_{t-1})}[g_t],$

Stochastic Variational Inference

$$egin{aligned} q(w_g) &= \Gamma(a_g, b_g), \ q(w_{\hat{g}}) &= \Gamma(a_{\hat{g}}, b_{\hat{g}}), \ q(g_t) &= \mathcal{N}(\mu_{t,g}, \sigma^2_{t,g}), \end{aligned}$$

Results

@ ICML 2024

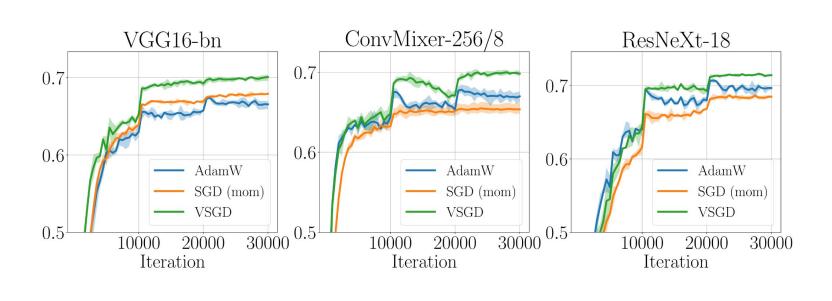


Table 1. Final Average test accuracy, over three random seeds.

	VSGD	VSGD	A DAM	ADAMW	SGD	
	(w/L2)	(w/o L2)	(w/o L2)	(w/L2)	(w/ mom)	
	CIFAR100					
VGG16	70.1	70.0	66.8	66.6	67.9	
CONVMIXER	69.8	69.1	66.5	67.0	65.4	
RESNEXT-18	71.4	71.2	68.2	69.7	68.5	
	TINYIMAGENET-200					
VGG19	51.2	52.0	47.6	49.0	50.9	
CONVMIXER	53.1	52.6	51.9	52.4	52.4	
RESNEXT-18	48.7	47.2	48.8	48.9	47.0	

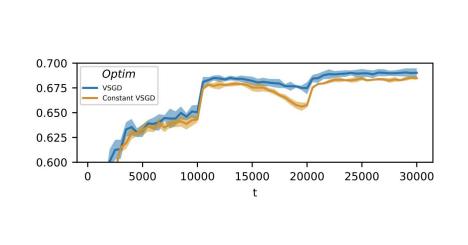
We observe that VSGD almost always converges to a better solution compared to ADAM and SGD, outperforming ADAM by an average of 2.6% for CIFAR100 and 0.9% for TINYIMAGENET-200.

Ablation Studies

Constant VSGD and

Adam

γ	Accuracy
1e-9	67.75
5e-9	68.59
1e-8	69.03
5e-8	69.77
1e-7	69.71
1e-3	60.97



Test accuracy on Clfar100