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● We propose VSGD: a novel optimizer that adopts a probabilistic 
approach. We model the true gradient and the noisy gradient as 
latent and observed random variables

● We draw connections between VSGD and several established 
non-probabilistic optimizers. 

● We carry out an empirical evaluation of VSGD by comparing its 
performance against the most popular optimizers

Summary

Probabilistic Model

● We model noisy gradient (observed) and 
true gradient (latent) with gaussians

● We use Gamma prior over precision variables

Posterior Inference

We employ stochastic variational inference 
with mean field assumption to approximate 
posterior of the unobserved variables

Results

VSGD almost always converges to a better 
solution compared to ADAM and SGD, 
outperforming ADAM by an average of 2.6% for 
CIFAR100 and 0.9% for TINY IMAGENET-200. 

Constant VSGD

Control variate aggregates information about 
previously observed noisy gradients and serves 
as a mean for the true gradient

We derive closed-form updates for global and 
local variational parameters and scale the step 
size using the second moment estimate: 

SGD

Update model parameters 
using noisy gradient of the 
loss function and step size 
defined by learning rate

A simplified model assumes constant variance 
ratio between noisy and true gradient

The first and second gradient momentum allows 
us to draw connection to Adam, SGD with 
momentum, and AmsGrad 
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● We propose VSGD: a 
novel optimizer that 
adopts a probabilistic 
approach. 

● In VSGD, we model the 
true gradient and the 
noisy gradient as latent 
and observed random 
variables, respectively, 
within a probabilistic 
model. 

● We draw connections 
between VSGD and 
several established 
non-probabilistic 
optimizers. 

● We carry out an empirical 
evaluation of VSGD by 
comparing its 
performance against the 
most popular optimizers

Summary Results

We observe that VSGD almost always 
converges to a better solution 
compared to ADAM and SGD, 
outperforming ADAM by an average of 
2.6% for CIFAR100 and 0.9% for 
TINYIMAGENET-200. 

Variational Stochastic 
Gradient Descent

Ablation Studies

Test accuracy on 
CIfar100

Model

Stochastic 
Variational Inference

Constant VSGD and 
Adam

● We model noisy gradient 
(observed) and true gradient 
(latent with gaussians)

● We use Gamma prior over 
precision variables

● Control variate aggregates 
information about previously 
observed noisy gradients and 
serves as a mean for the true 
gradient


